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I. I NTRODUCTlO,\

The problem 01 approximating a given two-dimensional Ic"!IOn hI, ~!

simpler region, selected from a family of simpler regions. OCelli· \\ ilh I'ea
sonable frequency. One might point to Kepler's problem or appro\imating
the observed positions of a planet by an ellipse. It is often po·,At!c hy a
variety of devices to reduce the problem to a one-dimension;,! t'ilC and
apply well-established methods of one-dimensional approximatiull theory.

[n this paper. however. we shall stress methods that arc intrin'x,diy IWo
dimensional. As a concrete example, we shall eOI1!.'entralc on the prt)hkm of
approximating a given triangle by a circle. This problem is iIlreaJy ',uf1]cientiy
complicated so that closed form expressions may be very diflicu1t 1/ "btaln,
but sufficiently simple so that the main features are not obscured In dealing
with general situations. wc shall have no great Interest in "p:;;i:,tiuglcal"
regions. but shall assume that all our regions have piecewise :tllalvtil' (or
even simpler) boundaries. Very often the family of approxill1iiilh c'(.nsl,,1', Ill'

one basic figure R together with all its transforms g R whcre g l'll1 l'iciTlcnt
of some familiar group G of plane transformations. Thus. for (xill1lplc,. the
approximants might consist of (a) all circles in the plane. (b! ;;11 l'iJipscs.
(c) all figures congruent to a givcn figurc R. etc.

2. THE M!THOD OF [N1TRPOLATlO,\

Let R] and R.... bc two plane regions. By analogy with the onc-dillK'ihiOn,d
casco we shall say R 1 interpolate.1 to R.... (or vice versa) at the poin!·, PI . p .... ...

* Results shown in this paper were obtained, in part, in Ih,-, course of rcse~llch 'pullsorcd
hy the National Science Foundation under Crants MPS-75-()746~ and GP·l().'~!
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P n if these points lie in both R I and R2 : Pi EO R I n R 2 , i = I, 2, ... , n. While
this definition is by no means devoid of interest, we shall in actuality deal
with the case where each of the points PI'"'' Pn lies on the boundaries of
both R I and R2 •

FIGURE 1.

One may also consider interpolatory conditions of osculatory Hermite type.
If at a point PI common to the boundaries oRI , oR2 of RI , R2 , both oRI and
oR2 have a direction, and if these directions coincide, then we shall write
(aRI)' = (aR2)' at P = PI , and consider that two interpolatory conditions
are fulfilled at PI .

FIGURE 2.

We turn immediately to the case RI = T = triangle, R2 = C = circle. A
circle is determined uniquely by three noncollinear points. Therefore, given
three points PI' P2 , P3 on aT not all lying on one side of T, there exists a
unique circle C which interpolates to T at the Pi .

Some notable selections are

(a) select Pi as the vertices of T. This leads to the circumscribed circle;

(b) select Pi as the feet of the perpendiculars drawn from the incenter
of T. This leads to the inscribed circle;
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(c) take Pi as the midpoints of the sides of T. This circle also passes
through the feet of the altitudes of T and through three other distinguished
points. Tt is called the nine-paint-circle of T.

Note that the circle in (b) has second-order contact with iT at Pi and so
satisfies six interpolatory conditions.

(d) In addition to the nine-point circle. thelT are numerous other
interpolatory circles which occur in advanced synthetic geometry. (See. e.g..
Johnson [II].) For example, given a (nondegenerate) triangle T, there is a
unique point K which minimizes the sum of the squares of the distances from
the point to the sides of T (see, e.g., [II, p. 213]). K is known as the Lemoine
point or the symmedian point of T. Through K draw lines anti parallel to the
three sides of T. These lines intersect the sides of T in six points which lie on a
common circle known as the second Lemoine circle. We shall have occasion
to mention the symmedian point and elaborate the definitions later. (See
Example I, Section 6).
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The case R] T triangle, R~ E ellipse, is also of interest. Here the
situation is different in that we have to dispense with uniqueness, The equation
of a conic section, Ax2 + Bx)' -i- Cy~f Dx E)' F 0, contains five
essential parameters. Hence five points in the plane of which no three are
collinear will determine a unique conic (not necessarily an ellipse). Three
points on aT, not all on one side of T determine a circle, hence an ellipse. It
can be shown that given four points. PI , P~ , Pa ' P4 ' which are the vertices
of a nondegenerate convex quadrilateral, a one parameter family of ellipses
may be found passing through these points; hence, given four points on a
triangle, two on side I, one on side 2, one on side 3. the same may be asserted,

A method of interpolation which has become very popular. particularly in
computer-aided design. is the usc of parametric. periodic. interpolatorr cllhic
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~plines. Given n points in the plane PI' P2 , ••• , p .. , p ..+l = PI' and n + 1
parametric values 0 = t1 < t2 < ... < /Ml' we can find two functions
x = x(t), Y = yet), each of which is a cubic spline of period tMI and such
that Pi = (x(ti), yeti)), i = 1, 2, ... , n. As this method is strongly one-dimen
sional, we mention it, but shall not pursue it further.

3. THE METHOD OF MOMENTS

A second interpolatory process occurs when moments are used instead of
functional values. By the moments of a bounded region R are meant the
numbers

fLm.n(R) = fLm ... = ff xmyn dx dy,
R

m, n = 0, I, .... (3.1)

The complex form of these moments has also been found convenient

Tm.lR) = T",.n = ff zmzn dx dy,
R

More generally, one might work with

z = x + iy, z = x - iy. (3.1a)

fLm.n = I" {" x",yncR(x, y) w(x, y) dx dy, m, n = 0,1,...,
-XJ -XJ (3.2)

where CR(x, y) is the characteristic function of the set R (CR(x, y) = 1 if
(x, y) E R, CR(x, y) = °otherwise) and where w(x, y) ~°is an appropriate
fixed weighting function. The discrete Fourier transform (or trigonometric
moments)

/I. = fa) fOG C (x 11) e27Tirn"'e27Tiny dx dy
rm,n R'" 'J

-00 ~OO

(3.3)

might also be considered. Other possibilities are the discrete Walsh trans
form, etc.

As particular instances of (3.1), we cite

fLo.o = If dx dy = area of R == A(R) = A,
R

fLI.O = If x dx dy = y-moment of R; Xc.g. = OjA) fLl.O'
R

fLO.I = If y dx dy = x-moment of R, Yc.g. = OjA) fLO.1
R

(xc.g. andye,g. are the coordinates of the center of gravity of R), (3.4)
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fi2.0 jJ X 2 dx dy c· moment of interia of R about the l'-axis,
R

jJy 2 dx dy
R

fil.l -~- JJ xy dx dl'
R

moment of inertia of R about the x-axis.

product of inertia of R.

The method of moments proceeds by moment matching. That is. olle
approximates a region R from among a family of regions.'/' by selecting a
region S E .<'f" for which

for some finite number of index pairs (i, j). (3.5)

EXAMPLE.

that area (C)
For a given triangle T there is one and only one circle C such

area (T) and e.g. (C) cc c.g. (T).

4. A GENERALlZATIO"i: FEATURES AND FEATURE MATCHING

Let Jil be a family of regions R. Suppose that for each R E.!It there IS a
mapping fi of Jil into the set of real or complex numbers. This mapping will
be called a functional on [Jf or a feature. Among the various features which
have been found to be of interest are area A, perimeter L, the higher trigono
metric moments or discrete Fourier transform, diameter, connectivity, various
measures ofsymmetry, and aspect ratio. One should also mention the elemen
tary "point" feature fip : fip(R) c= I if PER. fip(R) 0, otherwise. One
might also consider very "advanced" features such as isoperimetric ratio
(LfA), capacity, torsional rigidity, principal frequency. etc., etc. (See P61ya
and Szeg6 [16].)

The approximation of a region R by a member S of a family Y of regions
may proceed by feature matching. That is, let fii • ii, 2, ... , n, be a finite
number of features. One now requires that an S E Y be selected so that

I. 2, ... , n. (4.1)

Of course, it may be impossible to meet conditions (4.1), in which case one
can proceed by feature matching in some approximate sense. We shall
elaborate this notion subsequently.

Suppose that {fii} designates a finite or a denumerable set of features
defined on .0){, a family of regions. Suppose, further. that for R, S E 311.

for all i (4.2)
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implies that R = S. Then {fLi} will be said to be complete in :3£. That is to say,
the regions of:3£ can be completely identified by the features {fLi}' Generally
speaking, strict equality: R = S is of the most interest for us. But the possi
bility of weaker equivalences such as R = S a.e. must be allowed for.

EXAMPLE I. Let ,o/l consist of all nondegenerate triangles in the plane. The
four complex moments 7 0 ,0 , 71,0 , 7 2 ,0' 7 3 .0 form a complete set of features in
:3£. See Davis [5].

EXAMPLE 2. Let:3£ consist of all nondegenerate triangles together with
all nondegenerate circles. Then the same conclusion holds.

The classic cases of the completeness (or closure) of a system of functions
are examples of the completeness of a system of "features." Among the best
known complete sets of functions is the set of powers and correspondingly,
we have the following theorem.

Let Band D be open bounded sets in the plane which possess exterior points
in the neighborhood of any boundary point. Then,

If xmyn dx dy = If x",yn dx dy,
B D

111, n = 0,1" .. , (4.3)

implies B = D.

(See Davis and Pollak [4].)
Note the conclusion B = D; not B = D a.e., this 1S because we have

restricted the nature of the sets Band D.

5. METRIC SPACES OF REGIONS

Let :3£ designate a family of regions. It is possible to introduce the notion
of distance so that :3£ becomes a metric space. We first recall the relevant
definitions.

Let d be a function from :3£ x :3£ to the set of nonnegative real numbers
with the properties

(a) d(R, R) = ° for all R E:3£,

(b) d(R, S) = d(S, R) for all R, S E:3£,

(c) d(R, T) ,s:; d(R, S) + d(S, T) for all R, S, T E ,o/l.

Such a function is called a pseudometric on :3£ and the pair (:3£, d) is called a
pseudometric space. If, in addition, the function d(R, S) satisfies

(d) d(R, S) = ° implies R = S,

then (.'?Il, d) is called a metric space.
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In some instances it may be sufficient to deal with pseudometric spaces.
There are numerous ways of defining a pseudometric (or a metric) for a

family ,3£ of regions.

(a) We begin with an elementary "distance" between two sets. Let A

and B be two subsets of the plane, and let d designate any pseudometric in
the plane. Then the number

D(A, B) inf{d( p. q): pc: A. q B: i:'.I)

is commonly referred to as the distance between the subsets A and B.
As it stands the set of subsets with this distance does not form a pseudo

metric space. But one can be formed by identifying sets of distance zero. For
details see. e.g., Kelley [14, p. 123].

(b) The Hausdorflmetric. Let Rand S be seb of the plane. Let d be any
metric in the plane. Let

f/(R.Il) l1laxisup d( p. S), Slip d( p. RJ:
/,(' R lieS

inl:e o R S EB.•) R Ell, .

B unit disc with respect to the iI mdric.

Then H( R. S) dennes a metric space. For the notation S EB. ,ee Section 7.

(c) :14etric induced hi' jil/lctio/l spaces. LetYl designate the Lund:- of
bounded regions and their closure in the plane.

For each R E"JI. designatc by CR(x, .1') the characteristic function of the
region R (C R I if C\'. .1') fC R. C R 0 otherwisc). Let C he a bmil: of
functions defined over the whole plane which contains all the CR. RYl. and
which has been provided with a (pseudo) metric iI( r g). Then. the dclinitioJ1

induces a (pseudo) metric inYl.

EXAMPLE I. Let C be the U' ,pace on \" '" X. /)

1:'.3)

l,,.,othat

diR, S)
1

Cdx, r)!' dx d!')

Let ~f(X• .1') I C R(X, .1) CsC>;, y) !, Then. we have

~fC\"• .1') 0 if C\"•.1") F RuS'.

ql(Y. I) 0 :1 C\". 1) R n ,"',

dl(l. r) I if (\,1) (R )1 (I, f{ I
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dp(R, S) = area (R - S) -+- area (S - R) = area of symmetric
difference of Rand S. (5.5)

The selection p == I leads to the particularly simple definition

d(R, S) = area(R - S) -+- area(S - R).

FIGURE 4.

(5.6)

In every case, this leads to a pseudometric space. If a metric space IS

desired, the family 3£ should be restricted in such a way that the condition

implies R = S.

area(R - S) -+- area(S - R) = ° (5.7)

COUNTEREXAMPLE. Let R =c the unit disc x2 -+- y2 < I. Let S c= the
punctured disc °< x2 -+- y2 < I. Then area(R - S) -+- area(S - R) = 0,
but R c/= S.

One way in which this can be done is to require that the sets of 3f are all
bounded, open sets which have an exterior point in the neighborhood of any
boundary point.

(d) Metrics induced byfeatures. Let 3f be a set of regions in the plane.
Let {fLi} designate a set of features. For each R E 91, set up the vector (of real
or complex numbers) vCR) = (fLI(R), fL2(R), ...). Depending on whether the set
of features is finite or denumerably infinite, the vector vCR) will have a finite
or an infinite number of components. Assume that the vCR) can be embedded
in a normed linear space of appropriate dimension and with norm I! !i
Introduce the pseudometric d by means of

d(R, S) = II vCR) - v(S)!! ; (5.8)

it is easily shown that (3f, d) forms a pseudometric space. Moreover, if the
set of features {fLi} is complete l in 3f, then (9l', d) forms a metric space.

1 Depending upon which features are selected, the question of completeness may pose a
problem of great difficulty. See, e.g., Kac [12].
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It i~ also possible to select a set of feature~ {fAu: that arc defined for fi in
some interval, I. We assume then that the functions fAe(R) can be embedded
in some normed linear space of functions defined on 1.

Example. COIl!'ex regiolls: supportjimctiolls, Let K be a bounded COI1\l'\

region in the x, F plane. K determines uniquely a 27T-periodic continuou~

functionIK(B). known as the slipportjimetiol1 of K. (See, e.g .. Section 7)
We may lake as our features fAK(B) sK(B). If L is a second convex region

with support function sdB), and if designates a norm in the space of
continuous. 27T-pcriodic functions. then

iI(K, L) (5.9)

determines a metric on the ~et .;t(' of all bounded convex sets in the plane
The LN' of the sup norm leads to the distance function

d(/\, I.) {~ 10)

It can be shown that this metric coincides with the HausdorJr metric. The
function ill I<, L) defined by

I (IA( /I)
• q

I) I! I

is also ;1 metric on .;t( having a number of usef'ul propertie~.

6. BEST ApPROXIMA1IO"I OF RLCi!ONS

Lel ;'/ be a metric space of regions R. LetN < be a sub~et of .//1. For a ~:Jvcn

R iCC .1/ we may raise the question of l1nding an R* .N* such that d( R. R i

infR .' iii R. R'). In general this is a nonlinear problem. If such an R'
exists. then it solves the pro!Jfcm oj' hest approximatioll of R by a member ul'
.Y!*. In ~ome happy cases. R* may both exist and be unique.

To construct examples of nonuniqueness: Consider the region R that
consists of two equal discs joined by a long thin corridor.

FI(iURE S.

Now, approximate this by a disc R* of equal radius in. say. the metric equal
to the area of the symmetric difference.

EX'\\IPU I. Given a fixcd (nondcgeneratel triangle T. what j, the he,t



APPROXIMATION OF REGIONS 69

approximation to it by a circle, using the area of the symmetric difference as
a metric? We shall indicate the answer when the angles of Tare <90°.

As observed before, there is a unique point Kin T, called the Lemoine point
or the :,ymmedian point, which minimizes the sums of squares of the distances
to the sides of T. A basic property of the symmedian point is this. Through K
draw three lines that are antiparallel to the sides of T. These three lines
intersect aT in six points. These six points lie on a circle whose center is K.
This circle is called the cosine circle of T or the second Lemoine circle. 2 (See,
e.g., Johnson [11, p. 271].)

The expression "antiparallel" is explained by the diagram below. The
lines AB and CD are said to be antiparallel (with respect to the lines OA and
OB) if -1:: ABO = -1:: OCD.

o

FIGURE 6.

The hexagon inscribed in the cosine circle is such that its opposite sides are
equal and parallel. The cosine circle solves the minimum problem.3 Here, in
brief, are the reasons.

P,

FIGURE 7.

• If Pi : (x, , Yi) are the vertices of T and if ai designates the length of the side Pi , then
the center (XL, YL) and radius r of the cosine circle are XL = (al'xl + a.'x. + a'-x3)!
(al' + a," + a3'); similarly for YL ; r = (ala.a.)!(al' + a.' + a3').

3 This solution was very kindly supplied by Dr. Michael Goldberg of Washington, D.C.
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An infinitesimal change in the radius will produce no change in the overlap
area. Hence, this radius yields an extremal for the overlap area (in this case. a
minimal overlap). Similarly, an infinitesimal translation of the center K to the
right will produce an increase in the overlaps Q2Pl and P1Q3 ' and an equal
decrease in the overlaps P3Q1 and Q1P2' Similar translations parallel to the
other sides of the triangle will produce no change in the overlap area. An
infinitesimal translation in any other direction can be resolved into two
translations parallel to sides of the triangle. Hence, the location K yields an
extremal for the overlap area. (These conditions are, in general, only necessary
for an extremal; their sufficiency requires further arguments.)

EXAMPLE 2. We give another approximation of a triangle by a circle.
using another feature. For the family of circles and triangles, the features
,,,( R) IfR Zl. dx dy, II. 0, I, 2. 3, form, as we have mentioned. a complete
set. Let T designate a fixed triangle whose vertices (in complex notation) arc
Zl ' Z2 , Z:l' Let C designate the disc centered at:: 11' with radius I' O.
Introduce

:l

I TI( T) '1.( C) ~.
:, 0

(6.1 )

By the complex mean value theorem which says that He I(z) dx dl' TTI'''/( )j')

for fez) analytic in C, it follows that 'I,(C) 7T!.2W"" The values of T i ( T) are
as follows (see Davis [5])

'oCT) A area of T: T I ( T) (A i 3) .I: T,,( T) (A/6)(S2 I).

T:J(T) (A! I 0)(S3 -- 2st 7p). where s -I _., -:j r -l-:!

Z2Z:~ -+- ~:J~l ,p - ..;:. 1':';?":";~

Hence

d2(T, C) A
., " .,

1Tr~H·2rr"'"" T, TTI'"H' 7 2

(6.2)

Letting Co

cf2(T, C)
(A7T)2 '

1/1T, C,

Co

Tii A7T, i

C I

J. 2. 3. 0" 1'2A, one has

1:1 (6.3)

This is to be minimized over the three-dimensional set )j'

semilinear problem.
We have

X. <T O. a

(F(T, C)
- (A7T)2- II' II' I 20" (Re ±(-/11/')

o
c,

16.4)
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3

pew) = L CkWI,'.
k~O

71

(6.5)

Now let w be fixed. If Re pew) < 0, then d2 is minimized at a = °and its
minimum value is (A7T)2 L=~o I Ck 12• If Re pew) ?: 0, then d2 is minimized
at a = (Re p(w))/(1 + 1 w 1

2 + I W 1
4 + 1 W 1

6
) and its minimum value is

2 ( 3 2 (Re p(11'))2 )
(A7T) k~O 1 Ck I - 1 + 1 11' 12 + ... + 1 11' 16 •

The investigation should now be carried further by varying w.
As a simple case, take T as the equilateral triangle whose vertices are

Zl = I, Z2 = W, Z3 = w 2
; w 3 = 1, W =1= 1. Then, s = 0, t = 0, P = 1, p(z) =

(1/7T)(1 + (7110) Z3). It can be shown that, as expected, the minimizing circle
has center at w = °and area equal to that of T.

7. ApPROXIMATION IN THE HAUSDORFF METRIC

[n this section we consider the approximation problem where the measure
of discrepancy between two sets is given by the Hausdorff distance. A natural
setting is the family re of nonempty, compact subsets of the plane R2. We
recall that if C1 , C2 E re, then the Hausdorff distance between them is given by

where 0 is the closed unit disc in the plane under the Euclidean metric. Here
A + B designates the Minkowski sum i.e., the set of all a + b with a E A,
bE B. The scalar product €A designates the set of all €G with a E A. Under
the Hausdorff metric, re is a complete metric space (see, for instance, [17]).
By considering sets of rational points, we see that re is separable. Moreover,
any subfamily {C E re ICC CO , Co E re fixed} is compact. This follows by
noting that any such subfamily is both closed and totally bounded (an €-net
can be formed from a sufficiently fine lattice). For convex sets, this compact
ness result is due to Blaschke (see [27]).

With this preparation, we can use standard techniques to investigate best
approximation.

THEOREM. Let A E re and let PJ C re be a closed subfamily. Then for some
Bo E PJJ

dCA, Bo) = inf{d(A, B) B E PJJ}. (7.2)
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Proof Fix any B (~ ;;Ij and define

.il {BE ..yj d(A,B) d(A, B):

Clearly,

inf{d(A, BJI Be ;.yj: inf{d(A, B)! Be :Yi:.

Moreover,.9J is compact since it is both closed and a subfamily of the compact
{C E ((; ! C C A .-!- d(A, B) OJ. Hence, d(A, B) attains a minimum over ;Y;.

Uniqueness of a best approximating set cannot generally be asserted.
Consider, for instance, A the closed unit disc, /11 the set ofline segments

[--17, --17]. The minimum Hausdorff distance is equal to one and is attained
for every b E [0, 2]. This example, however, suggests the following characteri
zation of the subfamily of best approximants.

THEOREM. Let A E ((; and let ;:4 (= 'f, be closed. Then the sub/amil)' ·:dIl:IJ

of best approxil71ants is compact.

ProoF Using the notation of the previous theorem. we have

Since:Yi is compact and {C (6 I d(A, C) d(A, BolJ is closed. ·:do is compact.
By suitably restricting the family of sets under consideration, stronger

results may be available. An example is affine approximation. where it is
required to approximate a set A from the family of translations and scalings
of a fixed set B. With the assumption of convexity, uniqueness can be asserted.

THEOREM. Let A, BE (6 he cOlluex with B satisll'illg

(i) B has all interior poinT,

(ii) DB has no corners.

Let q; ~= {rB + p ! r 0, p W:.
Then inf{d(A, B)] BE .11) is attained uniquely for some Bo E YJ. Moreol'er.

d(A, Bol inf{E

inf {E

o ! A C Bo -- EO]

o ! Bo C A EO] .

(7.3)

(7.4)

Before proceeding to the proof of the theorem, we present some facts about
convex sets which can be found in standard references such as Eggleston [8],
Yaglom and Boltyanskii [27], Rockafellar [18], and Valentine [22]. Asso
ciated uniquely to each convex K r= ((; is its continuous 21T-periodic support
fill1ctiol1

11:(f1) maxlx cos Ii I' sin II (x. 1') K:
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This association preserves both metric and "semilinear" structure

73

lX, (3 ?: 0, (7.5)

In addition,

Finally, if K contains the origin, then

for all 8, (7.8)

with strict inequality if the origin is an interior point.

Proolof the Theorem. We begin by interpreting the setup in terms of
support functions. Let sA(8) be the support function of A. By translating A
appropriately, we can assume without loss of generality that A contains the
origin and hence sj8) ?: O. Let sB(8) be the support function of B, where
again. through a suitable translation, the origin is an interior point and
sB(8) > O.

If p = (x p , yJ, then the support function of rB + p, r ?: 0, is rSH(8) +
x 1, cos 8 + YP sin 8, and

dCA, rB -- p) == max{1 sA(8) - (rsBC8) + Xv cos 8 +Y1) sin 8)118 E [0, 27T)}. (7.9)

We seek to minimize this expression over all values r ?: 0, xv, Yv' For the
moment, we relax the requirement that r be nonnegative and recognize the
resulting problem as one of best uniform approximation of sA(8) by a linear
combination of the functions sB(8), cos 8, sin 8.

It is well known that if these functions form a periodic Tchebycheff system,
then a unique best approximation exists (see, for example, Karlin and
Studden [13, p. 282]). This condition holds if

or, equivalently,

I
sB(81) cos 81 sin 81 I
8B(82 ) cos (}2 sin (}2 > 0
8B(8a) cos (}a sin (}a

(7.10)

where 81 , (}2 , 8a are distinct and taken in counterclockwise order [13,
p. 180].
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There are two possibilities. If 81 , 82 , 8a are "spread out," i.e .. 0 &2

81 7T,0 < 8a - 82 7T,0 81 8;l < 7T, then each term ill (7.11) IS

nonnegative and two must be strictly positive (recall sR(8) O. by assump-
tion). On the other hand, if the 8's are "clustered," 81 B2 0; 01 ".

a more delicate analysis is required. It is well known that (7.11) ah\ays holds
with replaced by (see, for instance Boas [3, p. 70], Vitale [25]). If
equality obtains, then the following type of picture must occur.

e 8 e
3 2 I

fiGURE ~.

B must lie in the intersection of the depicted half planes (Inc! it must
contain the point q. Necessarily, q is a corner of ('B. but this contradicts
assumption (ii).

Hence we have verified (7.11) and conclude that there is a best approxima-
ting linear combination, which we write as rsB(8) a cos(B 0,,). Indeed.
the theory allows more to be concluded. If

(7.12)

then there exist four points of equioscillation. namely. °1 , O2 • 0; . H1 (again
in counterclockwise order) such that

where i I, 2, 3,4 and 6 ~~ _L 1 or I. This implies (7.3) and (7.4) and to
conclude the proof we only have to show that r O. Using (7.12). we han:



or

where
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(7.13)

D = max{rsB(8) - sA(8)! 8 E [0, 27T)}.

Again from (7.12) we have

Me;: max{i sA(8) - rSB(8) II 8 E [0, 27T)} + max{1 a cos(8 - 80)11 8 E [0, 27T)}

=D+a

or

(M -a) ~D. (7.14)

Combining (7.13) and (7.14) yields D ~ 1M - a I ~ °and the continuity
of SA and SB assures the existence of a B such that

so that

rSB(B) ~ sA(B) ~ 0.

Since sB(B) :> 0, it follows that r ~ 0.
The actual numerical construction of the best approximating set would

proceed through the use of generalized Remez algorithms. We turn now to a
very special case in which this optimal set can be described in simple terms.
It is required to find the best approximating disc to a given triangle T. Some
notation will be useful. The center and radius of a disc C will be denoted by p
and r, respectively. Let M denote the maximum distance fromp to a vertex of
T and let 111 denote the minimum distance between p and a point of ar. If
p 4: T, then, setting x+ = x for x ~ 0, x+ = 0, otherwise,

d(C, T) = max{(M - r)+, m + r}

which is minimized for r = (M - m)j2, yielding d(C, T) = (m + M)j2.
Clearly, by moving p "toward" T, we can reduce (m + M)j2. Hence, a
candidate for the best approximating disc cannot have its center outside T.
For discs centered at pET, the optimal radius is (M + m)j2, yielding
d(C, T) cc (M - m)j2. Hence, in searching for the best disc, it is sufficient to
minimize M - m over all choices of centers pET.

THEOREM. Given any triangle, the best approximating disc is unique. Its
center is the intersection of the bisector of the smallest angle and the perpen
dicular bisector of the largest side. (The case of isosceles triangles should be
interpreted appropriately.)
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ProoF Uniqueness follows from the previous theorem. B) the preceding
remarks, we only have to verify that the described point minimize,\! ill.

We separate into two cases.

Case I. The largest angle of the triangle> 90
c

• We draw the triangle with
its largest side L down and its smallest angle to the right.

2

~
! 3

FIGURF '!.

Let p be any point of the triangle. Note that a farthest verte.\ from p must
be I or 3 (possibly both). Suppose without loss of generality it is 3. 1f fI IS not
closest to L, rotate p around vertex 3 to get a point p' with the same !'vf and /1/.

and hence M -- Ill, as p.

FIC;URE 10.

Now construct p" by projecting p' onto the perpendicular bisector of I..

I

~I
p' I

~---;----------
FIGURE 11.

It is straightforward to verify that p", if
(using an obvious notation) M" -- 11/" M

p', is strictly bettcr than /) I.e.
m. Thus the center of the best

~I -_ ------
FI(jLiRf-: J 2.
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circle must lie on the perpendicular bisector. Let p* be the point described
in the theorem. Note that the points above p* on the perpendicular bisector
have strictly larger M and smaller m thanp. As for points below p*, we have
the blown-up picture (where with a slight abuse of notation, we denote by
L/2 half the length of side L).

p*

p

LIZ
FIGURE 13.

Note that

M - m = (m2 + (U/4))1/2 - m.

Since

d(M - m)
dm

m
(m2+ (U/4))1/2 - I < 0,

m should be made as large as possible.
Hence p* is the best center.

Case 2. The triangle is acute angled. The perpendicular bisectors divide
the triangle into three regions labeled by the farthest vertex.

2

3

1-------L:.2=-~ ___:::,.3

FIGURE 14.

By an argument similar to that used in Case 1, it is possible to show that p*
must lie on the "skeleton" and indeed must coincide with the intersection
of the upper branch and the angle bisector at vertex 3.
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p*

L _

FIGURE 15.

8. ApPROXIMATION AS A PROJECTION OPERATOR

The interpretation of least-squares approximation as a projection is well
known. There has been considerable abstract development of this idea.
particularly for functions of one real variable. See. e.g.. Deutsch [6].

Let us suppose that (Y? is a family of regions in the plane and we have a
mapping P of .oil into :Y?' Such a mapping will be called a projection if
p2 c= P.

EXAMPLE I. Let ,J;; consist of all (nondegenerate) triangles and circles 111

the plane. 1fT is a triangle. let P( T) designate the nine-point circle (or the
inscribed circle or the cosine circle.... ) of T; fix on one of these. If C is a circle.
let P(C) = C. Then, clearly p2 P so that P is a projection.

EXAMPLE 2. Let .;.f' designate the set of all bounded convex regions K of
the plane. Let P(K) designate the circumscribing polygon with sides in given
feasible directions (where the directions have been specified by giving. e.g.. the
direction of the outward normals to the sides). Then. clearly. p2 P,

EXAMPLE 3. Let.:Yl be a metric space of regions and 31'* a subset of //1.

Suppose. further, that for each R e f}f the problem of best approximation to
R from among the regions of /J7l* has a unique solution. Designate it by
P,~*(R). Clearly, P iR* is a projection operator.

EXAMPLE 4. Let .%~ designate the set of all compact convex regions K of
the plane. Let P(K) designate the unique disc which best approximates Kin
the sense of the Hausdorff metric. Then p2 P.

The study of the properties of projection operators in the present context
would seem to be worthwhile.
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9. BEST APPROXIMATION OF REGIONS: A STOCHASTIC ApPROACH
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If the problem is of sufficient complexity and numerical answers are
desired, we might be forced to a Monte Carlo approach. Take, for example,
the problem of approximating a fixed triangle by a circle in the area of the
symmetric difference metric. Let the characteristic function of T be CT(x, y)
while that of a circle centered at (a, (3) and of radius r be C~,I3.r(X, y). We
must minimize

ro

lea, (3, r) = II I CT(x, y) - C~.I3.r(X, y)1 dx dy (9.1)

over the region - 00 < a, {3 < 00, r > O. Insofar as the boundary of the
symmetric difference is a sufficiently complicated piecewise linear and
circular configuration, it might be considered the better part of wisdom to
estimate lea, (3, r) by Monte Carlo techniques.

The naive approach would be as follows. (1) Fix a, {3, r and then estimate
l(ex, {3, r) by Monte Carlo to "sufficient" accuracy. Then, (2) vary ex, {3, and r
according to some strategy of minimization, e.g., a gradient method.

It might occur to the reader that it should be possible to combine
(1) and (2) into one process, varying the parameters as one samples the
integrand.

Such a process has been called "stochastic approximation" and extensive
information about it can be found in Wasan [26, Chap. 3]. While convergen
ce theorems have been proved, the hypotheses under which the theorems
hold are often "unverifiable," depending, as they must, upon the nature of 1
as a function of its parameters, and the nature of the minimizing and iterative
strategies. Furthermore, even if one were to exhibit convergence in one's
particular problem, it is by no means clear that the method of "stochastic
approximation" exhibits computational economies over the naive method.
Numerical experimentation with techniques of stochastic approximation
have revealed that convergence may be agonizingly slow.

10. STOCHASTIC ApPROXIMATION OF A SECOND KIND

We shall begin with a very specific problem in geometrical probability. Let
S designate the unit square S: 0 ~ x, y ~ 1. Let T designate a closed (interior
plus boundary) triangle contained in S. If T1 and T2 are two such triangles
selected at random, what is the probability that T1 and T2 overlap? More
specifically, a random triangle T will be constructed by selecting indepen
dently six numbers Xi, Yi' i = 1,2,3, from a uniform distribution on 0 ~
t ~ 1 and using (Xi' Yi), i = 1, 2, 3, as the vertices of the triangle.
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In the language of linear programming, consider the system of six linear
inequalities

Aix B,y+Ci o. I. 2..... 6. ( 10.1)

What is the probability that the system is feasible. given certain information
about the distribution of the Ai, Bi , and C,?

For two given triangles (or six given linear inequalities), algorithms of
linear programming may be used to determine numerically whether the
triangles do or do not overlap.

To solve such a problem may involve a considerable amount of computa
tion. Therefore we might like to replace this problem by a simpler one. but
which is only partially equivalent to it: Approximate each triangle by a
circle (closed disc) by means of a fixed policy of approximation. Then ask
the question: Do the corresponding circles overlap? This can be answered by
a short computation.

As examples of a fixed policy of approximation of a triangle r by a circle
C we mention:

(a) use of the circle whose center is at the center of gravity of T and
whose area equals that of T.

(b) use of the circle whose center is at the center of gravity M of T and
whose radius equals the average distance of tv! from the vertices of T.

(c) use of second Lemoine circle of T.

These particular policies are coordinate free.
A policy of approximation might be completely deterministic. But it :1lso

might be stochastic or might have a mixture of deterministic and stochastic
elements. For example, given T, determine C by using the center of gravity of
T as its center and by selecting its radius at random from a uniform distribu-
tion on 0 r 1.

In what follows we shall assume that the policy is deterministic.
For each fixed policy :1)' of approximation. we consider the 2 2 matrix

P whose elements Pu are:

Pu the probability that both the triangles and the corresponding
circles overlap:

P12 the probability that the triangles overlap but the corresponding
circles do not:

PZl ..•~ the probability that the triangles do not overlap hut the
corresponding circles do;

P22 the probability that neither the triangles nor the corr,:slwilding
circles overlap.
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Pu +Pl2 = the probability that the triangles overlap;

Pn + P22 = P = trace P = the probability that the behavior of the
circles predicts properly the behavior of the triangles. (10.2)

For each policy of approximation;?/' we may, in principle, compute the
correspondingp = p(£?1!). For a given family of policies {&}, we may raise the
questions of whether there is a best one, how to characterize it, how to
compute it, etc.

We shall call this type of approximation stochastic approximation. This
term is used in a different context within sampling theory (see Section 9);
however, we feel that this term is equally, if not more, appropriate to the
process just mentioned.

Numerical Values by Monte Carlo

The basic probabilities Pi} where estimated by Monte Carlo in the following
way. Each of the 12 coordinates was obtained from the FORTRAN random
number generator and was assumed to be drawn from a uniform distribution
over [0, 1]. The policy Y'l for the approximating circle was to place its center
at the center of gravity M of the triangle and to use the average distance of M
to the vertices as its radius. The results are tabulated below.

Key

Triangles overlap
Circles overlap

Triangles do not overlap
Circles overlap

Number of runs: n == 10,000

62.92%

27.39 %

Number of runs: n = 20,000

63.43 ~,:,

26.915 /~

Triangles overlap
Circles do not overlap

Neither triangles nor
Circles overlap

0.16%

9.53 ~;,;

0.16%

9.475 %

Adopting the values after n = 20,000 experiments, one can say that the
probability that two triangles overlap is 0.6345 + 0.0016 R:;. 0.64. The
probability that the circles are an accurate predictor for the triangles is
0.6345 + 0.09475 f'::! 0.73 = P(£?1!l)'
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The upper right element of the matrix is particularly interesting
geometrically, showing a relatively rare event. Consider also two degenerate
policies.

(I) A "placebo" policy JI'" of approximating T by a fixed circle. say
the unit circle. Since the approximating circles always overlap. this policy
will be effective ~64 ';0 of the time.

(2) The "null" policy .:I'" of approximating T by a null circle of radius 0
and center at the e.g. of T. Since these points coincide with probability O.
this policy will be effective ~ 36 00 of the time.

We list here the results of several additional policies .j!'.2' J/\. ,j/\. . JI)I\'

.:;J~: center of circle is at e.g. /1,101' T. Radius of circle equals maximum
distance from M to vertices of T

f\: center of circle is at e.g. ,"101' T. Radius of circle equals millllllUm
distance from M to vertices of T.

';/}J: center of circle is at e.g. Mol' T. Radius of circle equals the mini
mum of the distances of M to three sides of T.

J!},: Center of circle is at e.g. of T. Area of circle is area of T.

J/}fi: Circle is the second Lemoine circle of T.

The first four matrices below are all for 20,000 samples.

63.61 0

0

33.535 0
"

55.19 0

0

9.615°
0

p(:.fl:j )

I X.33 "0

0°
0

45.88 ~o

3.12 lop

11( . .fl" I

op"

2.855 0
,

0.665

8.42°"
26.775 ""

0.8197

45.28 "0

36.39 "0

0.547

17.73 0
'0

33.27°"

0.792
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49.45 %
0.32%

P(f?Pa)

27.92%
22.30%

p(f.YJa) = 0.718

In 2Pa , the number of samples: 4000; is restricted to acute-angled triangles.
Thus, of the five policies tested, f.YJa appears to be optimal.
We may run statistical tests on these results to determine the level of

confidence which we can place in distinguishing, say, f.YJa from f.YJ 5 •

A commonly employed test is as follows. Assume that an event has
occurred a times in m repetitions of condition (1) and b times in n repetitions
of condition (2). Then, the difference in relative frequencies is regarded as
significant if

I
~ - ~ I > ! (_1 +!) _L u_ ( (a + b)(m + n - a - b) )1/2,.
m 11 2 m n r ~ mn(m + n) (10.3)

where u" is the value of the standard normal distribution at the significance
level ex. (That is, for ex = 95 %, u" = 1.96; for ex = 99 %, u" = 2.576.)

According to this test, the difference between f.YJa and f.YJs checks out as
significant at better than the 99.99 % level of significance.

Formalization of the Problem

Let the vertices of Tl be (Xl' Yl), (X2 , Y2), (Xa ,Ya) and those of T2 be
(x4 ,Y4), (x5 ,Ys), (xa , Ya)· Let v designate the 12-component vector Xl'

Yl ,... , Xa , Ya . Let H 12 designate the closed unit hypercube in (real) Euclidean
12-space.

Define a characteristic function ep(v) on H12 as

ep(v) = 1

ep(v) = 0

if Tl n T2 =1= 0,

if Tl n T2 = O.
(10.4)

Thus, ep is I on a certain polyhedron lying in H12 , and 0 elsewhere. Now one
has,

f. ep(v) dv
H i2

(10.5)

== the probability that the two triangles overlap.
Fix a policy f.YJ of approximation of a triangle T by a circle C.
A given vector v determines two triangles T l and T2 , which, in turn,

using the policy f.YJ, determine two approximating circles Cl and C2 •
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Define a second function '1;(1') as

.j;(r) = I D.

The pO!lcy ./' will be a good one if Vi is close to ¢. meaning by thi" that
ii ¢ '/1 is small. where I designates a norm on some class of functions

del1ned on HI'!. . For simplicity. adopt I '!. JII" (2 dl', so that one wanl', ~l

small

1(./)) r (q)
• Jl J:.'

<f;l" dl i 10.7)

Notice that whenever the circles arc a good predictor, 1,(1')

(¢ <!J)~ O. If the circles are a bad predictor. J; .Ii
(¢ JJ)~ I. Hence

V;II" J. so tha I

! so thai

1(1') the probability that the circles arc a bad predictor. r I(;.:,q

Naturally we would like to minimize it.

InsoLlr as ¢ and if; take on only the values U and I, ¢
we note the alternative expression

, and

[(./') ( IO.\) I

4. ApPROXIMATIO'4 THUll{)

A gi\en policy .1' of approximation determines the function J on !II"'
Thus. through the correspondence .!I' ~ Vi, and using 1(.7). we have con

verted our problem to one of classical approximation theory.

If the family of policies (Ji',: consists only of a finite number PI' dblinct
policies. 1'1 ..... J"v , then from the analytical point of view there i, nothing
further to discuss. There is an optimal policy and the question of its expedi
tious computation is another matter.

If the t~lmily of policies } is inl1nite. then there is a theory t() be
developed. and one must look at the corresponding Llmily of apprnximanls
{if;,(I'): \vhere -~ '/;,.

In gencral. the subject of optimal policy is a nonlincar problem. LxiSlencc
of a best approximation is usually based upon a compactness argument and

uniqueness of best approximation can often. but not always. be based upon :'
convexity argument.

Let T J have vertices (Xi. l',I. i 1. 2.\. while T, !la', vertiu:" (I ;)
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i ,= 4, 5, 6. Let the deterministic policy & assign to T1 the circle centered at
(a, b) and of radius r1 where one assumes that

a = q(x1 , ••• , Y3),

b = s(x1 , •.• , Ys),

r1 = r(x1 , .•• , Y3)'

(10.10)

The policy & assigns to T2 the circle centered at (c, d) and of radius r 2 where

c = q(X4 , , Ya),

d = S(X4 , , Ya),

r2 = r(x4 '00" Ya).

These two circles will be disjoint if and only if

Hence, writing

Q(v) = «a - C)2 + (b - d)2)1/2,

the circles are disjoint if and only if Q(v) > w(v). Hence,

(10.11)

(10.12)

(10.13)

if;(v) = \

if;(v) = 0

if Q(v) ~ w(v),

if Q(v) > w(v).
(10.14)

Now let {&o:} designate a family of policies which are parametrized by ex,
where we assume that ex is a real variable or a vector of real variables. Each
&~ determines two families of functions, Q(ex; v) and w(ex; v). Through them,
one has

if;,tCv) = 1

if;o:Cv) = 0

if Q(ex; v) ~ w(ex; v),

if Q(ex; v) > w(ex; v).
(10.\5)

EXAMPLE. Let the vertices of Tbe A, B, C, and its center of gravity be M.

Let PI ~= AM, P2 = BM, P3 = CM. Let the circle C approximating T have
its center at M and have radius

ex > 0 fixed.
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We now assume,

I. ex varies on a compact subset A of the ex space.

2. the two functions Q(,,; v) and W(lX; v) are continuous for \. A,

v EO' H 12 •

Under these conditions, a minimum to 1 exists. For.

IcY,) = 1(,,)

110.16)
2¢(r)) dr.

In view of the continuity of Q and w, it is clear from standard theorems of
integration theory that the second integral is continuous in "0 so that I(x) is
continuous. The existence of a minimum is an immediate consequence.

Adaptive learning. We may set the problem of having a computing
machine teach itself what is the best policy :J;J of approximation. One assumes
that the policy space has been parameterized in some fashion. Insofar as
theories of adaptive learning are clearly related to stochastic approximation
in the sense of Section 9, it follows that both types of stochastic approxima
tion can, in fact, be interrelated.

BIBLIOGRAPHICAL REMARKS

Professor I. J. Schoenberg has kindly pointed out that the affine approxI
mation theorem (Section 7) for the special case of B, a disc, has been con
sidered by Lebesgue (Sur quelques questions de minimum, relatives aux
courbes orbiforms, et sur leur rapports avec Ie calcul des variations. J. Math.
Pures Appl. (8), 4 (1921), (67-96).

Work related to Section 7 includes asymptotically optimal polygonal
approximation (McClure and Vitale [15]), computational procedures for
displaying and analyzing convex sets (Vitale and Tarr [23]), properties of
support functions (Vitale [25]), and limit theorems for sequences of random
sets (Artstein and Vitale [2] and Vitale [24]).

Sendov [19,20], has considered the problem of approximation in the
Hausdorff metric of sets defined by functions of one real variable and its
relationship to the theory of ,,-entropy.

The article [21] by Ulam advocates a methodology which is similar to the
one adopted in this paper. Particularly pertinent are his concepts of "quasi
fixed points" and ",,-morphisms."
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