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[. INTRODUCTION

The problem of approximating a given two-dimensional region by u
simpler region, selected from a family of simpler regions. occurs with reu-
sonable frequency. One might point to Kepler's problem of approximating
the observed positions of a planet by an ellipse. It is often possible by a
variety of devices to reduce the problem to a one-dimensicnal one und
apply well-cstablished methods of one-dimensionat approximation theory.

In this paper, however. we shall stress methods that are intrinsicaliv two-
dimensional. As a concrete example, we shall concentrate on the probiem of
approximating a given triangle by a circle. This problem is ulready ~uflicientiy
complicated so that closed form expresstons may be very difficult 1o obtam,
but sufficiently simple so that the main features are not abscured. In deuling
with general situations. we shall have no great interest m “puihologeal™
regions, but shall assume that all our regions have piecewise wnalyvtic (or
even simpler) boundaries. Very often the family of approximants consists of
one basic figure R together with all its transforms g¢R where ¢ 15 un clement
of some familiar group G of planc transformations. Thus. for cxamples. the
approximants might consist of (a) all circles in the plane. (ki «il ¢llipses,
(c) all figures congruent to a given figure R. etc.

2. THE METHOD OF INTERPOLATION

Let R, and R, be two planc regions. By analogy with the one-dimensional
case, we shall say Ry interpolates to R, (or vice versa) at the points P, . P, ...
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P, if these points liec in both R, and R, : P,e Ry N Ry, i =1,2,..., n. While
this definition is by no means devoid of interest, we shall in actuality deal
with the case where each of the points P, ,..., P, lies on the boundaries of

both R, and R, .

R,

FIGURE 1.

One may also consider interpolatory conditions of osculatory Hermite type.
If at a point P, common to the boundaries ¢R, , OR, of R;, R, , both 6R, and
JR, have a direction, and if these directions coincide, then we shall write
(¢R)) = (¢R,)" at P = P,, and consider that fwo interpolatory conditions
are fulfilled at P, .

5

FIGURE 2.

We turn immediately to the case R, = T = triangle, R, = C = circle. A
circle is determined uniquely by three noncollinear points. Therefore, given
three points P, , P,, P; on 0T not all lying on one side of 7, there exists a
unique circle C which interpolates to 7 at the P; .

Some notable selections are

(a) select P; as the vertices of T. This leads to the circumscribed circle;

(b) select P; as the feet of the perpendiculars drawn from the incenter
of T. This leads to the inscribed circle;



62 DAVIS, VITALE, AND BEN-SABAR

(c) take P, as the midpoints of the sides of 7. This circle also passes
through the feet of the altitudes of 7 and through three other distinguished
points. It is called the nine-point-circle of T.

Note that the circle in (b) has second-order contact with ¢ 7 at P, and so
satisfies six interpolatory conditions.

{(d) In addition to the nine-point circle. there are numerous other
interpolatory circles which occur in advanced synthetic geometry. (See, e.g..
Johnson [11].) For example, given a (nondegenerate) triangle 7. there is a
unique point K which minimizes the sum of the squares of the distances from
the point to the sides of 7 (see, e.g.. [1l. p. 213]). K'is known as the Lesoine
point or the symmedian point of T. Through K draw lines antiparallel to the
three sides of 7. These lines intersect the sides of 7 in six points which lic on a
common circle known as the second Lemoine circle. We shall have occasion
to mention the symmedian point and elaborate the definitions later. (See
Example 1, Section 6).

Fioure 3,

Thecase R, - T  triangle, R, £ ellipse, is also of interest. Here the
situation is different in that we have to dispense with uniqueness. The equation
of a conic section, Ax* +- Bxy - Cy? -I- Dx 4 Ey -~ F == 0, contains five
essential parameters. Hence five points in the plane of which no three are
collinear will determine a unique conic (not necessarily an ellipse). Three
points on ¢7, not all on one side of T determine a circle, hence an ellipse. It
can be shown that given four points, P, , P,, P, . P, ., which are the vertices
of a nondegenerate convex quadrilateral, a one parameter family of ellipses
may be found passing through these points; hence, given four points on a
triangle, two on side 1, one on side 2, one on side 3, the same may be asserted.

A method of interpolation which has become very popular. particularly in
computer-aided design, is the use of parametric. periodic. interpolatory cubic
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splines. Given n points in the plane Py, Py,..., Py, Py = Py, and n + 1
parametric values 0 =# <t, < ' <t,,, we can find two functions
x = x(t), y = y(t), each of which is a cubic spline of period z,,, and such
that P; = (x(¢,), ¥(t))), i = 1, 2,..., n. As this method is strongly one-dimen-
sional, we mention it, but shall not pursue it further.

3. THE METHOD OF MOMENTS
A second interpolatory process occurs when moments are used instead of

functional values. By the moments of a bounded region R are meant the
numbers

fomnR) == o = f f xmyndedy,  myn=0,1,. (3.1)
R
The complex form of these moments has also been found convenient
T R) = Ty = ﬂ zmZ" dx dy, z=x-+iy,z=x—iy. (3.1a)
R

More generally, one might work with

P = f f x"myrCr(x, y) wix, y) dx dy, m,n=0,1,.,
e (3.2
where Cg(x, y) is the characteristic function of the set R (Cgr(x,y) =1 if
(x, ) € R, Cp(x, y) = 0 otherwise) and where w(x, ) > 0 is an appropriate
fixed weighting function. The discrete Fourier transform (or trigonometric
moments)

Mo, n = f ) f Cr(x, y) e¥mimzeminy Jx dy (3.3)
might also be considered. Other possibilities are the discrete Walsh trans-
form, etc.

As particular instances of (3.1), we cite

Ho,0 = H dx dy = area of R == A(R) = A,
R
R

o1 = ﬂ y dx dy = x-moment of R, yeg. = (1/4) po.
R
(xc.g. and y¢ g_are the coordinates of the center of gravity of R), (3.4)

640/21/1-5
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a0 = } x2dx dy = moment of interia of R about the r-axis,
R

Ho,e = U y3dx dy = moment of inertia of R about the .x-axis,
R

M1 ™ J’ X1 dy dv = product of inertia of R.
R

The method of moments proceeds by moment matching. That Is. one
approximates a region R from among a family of regions .¢° by selecting a
region S € .% for which

i (R = s (S) for some finite number of index pairs (i, /).  (3.5)

ExampLE. For a given triangle 7T there is one and only one circle C such
that area (C) -— area (T) and c.g. (C) == c.g. (T).

4, A GENERALIZATION: FEATURES AND FLATURE MATCHING

Let # be a family of regions R. Suppose that for each R e # there s u
mapping p of # into the set of real or complex numbers. This mapping will
be called a functional on & or a feature. Among the various features which
have been found to be of interest are area A, perimeter L, the higher trigono-
metric moments or discrete Fourier transform, diameter, connectivity, various
measures of symmeltry, and aspect ratio. One should also mention the elemen-
tary “point” feature pp: pup(R) =1 if Pe R, pp(R) == 0, otherwise. One
might also consider very “advanced” features such as isoperimetric ratio
(L]A), capacity, torsional rigidity, principal frequency. etc., etc. (See Pélya
and Szeg6 [16].)

The approximation of a region R by a member .S of a family .’ of regions
may proceed by feature matching. That is, let u,. i = 1,2...., n, be a finite
number of features. One now requires that an S € .¥ be selected so that

i S) == piAR) i=1,2,...,n (4.1)

Of course, it may be impossible to meet conditions (4.1), in which case one
can proceed by feature matching in some approximate sense. We shall
elaborate this notion subsequently.

Suppose that {u,} designates a finite or a denumerable set of features
defined on #. a family of regions. Suppose, further, that for R, S ¢ 4.

pAR) - p(S) for all / (4.2)
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implies that R = S. Then {,} will be said to be complete in Z. That is to say,
the regions of # can be completely identified by the features {u;}. Generally
speaking, strict equality: R = S is of the most interest for us. But the possi-
bility of weaker equivalences such as R = S a.e. must be allowed for.

ExAMPLE 1. Let Z consist of all nondegenerate triangles in the plane. The
four complex moments 7, ¢, 710, T2.0 » T3.c fOrM a complete set of features in
ZA. See Davis [5].

ExampPLE 2. Let # consist of all nondegenerate triangles together with
all nondegenerate circles. Then the same conclusion holds.

The classic cases of the completeness (or closure) of a system of functions
are examples of the completeness of a system of “features.” Among the best
known complete sets of functions is the set of powers and correspondingly,
we have the following theorem.

Let B and D be open bounded sets in the plane which possess exterior points
in the neighborhood of any boundary point. Then,

Jf xmy* dx dy = ﬂ X"y dx dy, mn=0,1,.., (4.3)
' D

implies B = D.

(See Davis and Pollak [4].)
Note the conclusion B = D; not B = D a.e., this is because we have
restricted the nature of the sets B and D.

5. METRIC SPACES OF REGIONS

Let # designate a family of regions. It is possible to introduce the notion
of distance so that #Z becomes a metric space. We first recall the relevant
definitions.

Let d be a function from # X # to the set of nonnegative real numbers
with the properties

(a) d(R,R)=0 for all Re %,

(b) d(R,S)=4d(S,R) for all R, Se %,

() dR,T)<dR,S)+dS,T) forall R, S, Tc .
Such a function is called a pseudometric on # and the pair (#, d) is called a
pseudometric space. If, in addition, the function d(R, S) satisfies

(d) d(R,S)=0 implies R = S,

then (#, d) is called a metric space.
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In some instances it may be sufficient to deal with pseudometric spaces.
There are numerous ways of defining a pseudometric (or a metric) for a
family # of regions.

{a) We begin with an elementary “distance” between two sets. Let 4
and B be two subsets of the plane, and let ¢ designate any pseudometric in
the plane. Then the number

D(A, B) = inf{d( p,.q):p= A g B, (5.0

is commonty referred to as the distance between the subsets 4 and B.

As it stands the set of subsets with this distance does not form i pscudo-
metric space. But one can be formed by identifying sets of distance zero. For
details see. e.g., Kelley [14. p. 123].

{by  The Hausdorff metric. Let R and S be sets of the plane. Let « be any
metric in the plane. Let

H(R.S) = max{sup d( p. S). sup d( p. R)!

ne R ne S

infle -0 RS- eB.5_ R - €B.
B unit disc with respect to the « metric,
Then H(R. S) defines a metric space. For the notation § - ¢B. see Section 7.

() Metric induced by function spaces. Let # designate the family of
bounded rcgions and their closure in the plane.

For each R e 2. designate by Cglx, 1) the characteristic function of the
region R(Cgr = | it (x,y)= R. Cxr 0 otherwise). Let € be a tumily of
functions defined over the whole plane which contains all the Cp, . R = 7. and
which has been provided with a (pseudo) metric (/- ¢). Then, the definition

d(R.S) ~ d(Cgr.Cy) (3.3)
induces a (pseudo) metric in -#.

ExasmpLe |, Let C be the L» space on - o .y L.p - hoso that

s L
d(R, S) = ( ‘ CCelyr) o Oy, 1) " dy dy)

i

Let oi(x, v) = | Calx, 1) - Colx, 1) ". Then, we have
Hlx ) — 0 if (xv.1)e RU S,
Py 0 () RS,
Sl 1) ] i (vov)e (R Syaids R
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Therefore,

d*(R, S) = area (R — S) -+ area (S — R) == area of symmetric
difference of R and S. (5.5)

The selection p == 1 leads to the particularly simple definition

d(R, S) = area(R — S) -} area(S — R). (5.6)

FIGURE 4.

In every case, this leads to a pseudometric space. If a metric space is
desired, the family # should be restricted in such a way that the condition

area(R — S) + area(S — R) =0 (5.7)
implies R = S.

COUNTEREXAMPLE. Let R =:the unit disc x? - * << 1. Let S == the
punctured disc 0 < x® + y»® << 1. Then area(R — §) - area(S — R) =0,
but R # S.

One way in which this can be done is to require that the sets of & are all
bounded, open sets which have an exterior point in the neighborhood of any
boundary point.

(d) Metrics induced by features. Let Z be a set of regions in the plane.
Let {u,;} designate a set of features. For each R € Z, set up the vector (of real
or complex numbers) ?(R) = (u,(R), pno(R),...). Depending on whether the set
of features is finite or denumerably infinite, the vector v(R) will have a finite
or an infinite number of components. Assume that the ©(R) can be embedded
in a normed linear space of appropriate dimension and with norm || i,
Introduce the pseudometric d by means of

d(R,S) = | v(R) — v(S)]; (5.8)

it is easily shown that (#, d) forms a pseudometric space. Moreover, if the
set of features {u,} is complete! in Z, then (Z. d) forms a metric space.

1 Depending upon which features are selected, the question of completeness may pose a
problem of great difficulty. See, e.g., Kac [12].
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It is also possible to select a set of features ju,i that are delined for # in
some interval, /. We assume then that the functions us(R) can be embedded
in some normed linear space of functions defined on /.

Example.  Convex regions; support functions. Let K be a bounded convex
region in the x, v plane. K determines uniquely a 2m-periodic continuous
function sg(f). known as the support function of K. (See. e.g.. Section 7).

We may take as our features pug(8)  sx(8). If L is a second convex region
with support function (), and it = designates a norm in the spuce of
continuous. 2m-periodic functions. then

K. L) sgd) — 56 (5.9)

determines a metric on the set % of all bounded convex sets in the plane.
The use of the sup norm leads to the distance function

(N, 1) 0{11,;;13_,‘ st -8 (o) {3.10)

It can be shown that this metric comcides with the Hausdor!l metric. The
function (K, L) defined by

W2

AR L) | Gty s de (1)

i

is also @ metric on ¥ having a number of useful properties.

6. BEST APPROXIMATION OF REGIONS

Let # be a metric space of regions R. Let # 7 be a subset of #. For a given
R & .7 we may raise the question of finding an R* = 2% such that /(R. R™)
infg ., (R R’). In general this is a nonlinear problem. If such an R~
exists, then it solves the problem of best approximation of R by a member of
#*. 1n some happy cases, R* may both exist and be unique.

To construct examples of nonuniqueness: Consider the region R that
consists of two equal discs joined by a long thin corridor.

Fiaure 5.

Now. approximate this by a disc R* of equal radius in. say. the metric equal
to the arca of the symmetric difference.

Exavere 1. Given a fixed (nondegenerate) triangle 7. what is the best
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approximation to it by a circle, using the area of the symmetric difference as
a metric? We shall indicate the answer when the angles of T are <90°.

As observed before, there is a unique point K in 7, called the Lemoine point
or the symmedian point, which minimizes the sums of squares of the distances
to the sides of T. A basic property of the symmedian point is this. Through K
draw three lines that are antiparallel to the sides of 7. These three lines
intersect 07 in six points. These six points lie on a circle whose center is K.
This circle is called the cosine circle of T or the second Lemoine circle.? (See,
e.g., Johnson [11, p. 271].)

The expression “antiparallel” is explained by the diagram below. The
lines AB and CD are said to be antiparallel (with respect to the lines OA and
OB) if &* ABO = < OCD.

A

FIGURE 6.

The hexagon inscribed in the cosine circle is such that its opposite sides are
equal and parallel. The cosine circle solves the minimum problem.® Here, in
brief, are the reasons.

Q;\_._/Pz
FIGURE 7.

23f P, : (x,, y;) are the vertices of T and if a; designates the length of the side P;, then
the center (xz,yr) and radius r of the cosine circle are xp = (a,%x; + a.2x; -+ as2x;)/
@® + as® + a*); similarly for yr ; r = (ayaa)/(@® + a.® -+ as®).

3 This solution was very kindly supplied by Dr. Michael Goldberg of Washington, D.C.
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An infinitesimal change in the radius will produce no change in the overlap
area. Hence, this radius yields an extremal for the overlap area (in this case. a
minimal overlap). Similarly, an infinitesimal translation of the center K to the
right will produce an increase in the overlaps Q,P; and P,Q, , and an equal
decrease in the overlaps P,0, and Q,P, . Similar translations parallel to the
other sides of the triangle will produce no change in the overlap arca. An
infinitesimal translation in any other direction can be resolved into two
translations parallel to sides of the triangle. Hence, the location K vields an
extremal for the overlap area. (These conditions are. in general, only necessary
for an extremal: their sufficiency requires further arguments.)

ExAMPLE 2. We give another approximation of a triangle by a circle.
using another feature. For the family of circles and triangles, the features
7{R) = ffR zdx dy, k= 0, 1. 2, 3, form, as we have mentioned, a complete
set. Let T designate a fixed triangle whose vertices (in complex notation) arc
1. Zs» 23 . Let C designate the disc centered at - - w with radius » = 0,
Introduce

3
dT.C) Y Tl O (6.1)
A\
By the complex mean value theorem which says that [fe f(z) dx dv  ar?/(w)
for f(z) analytic in C, it follows that 7,(C) - #r®w". The values of v (7)) are
as follows (see Davis [5])

To{T) = A = area of T: TAT) - (A3)s: A TY  A6)(s> - 1)

T T) = (AJ10)s% — 251 -+ Tp), where I o | e
ZgZy < IyI L P 7 DTl
Hence
dAT, C) - A mr?? o P 2 T oo wrin? 2
L7y e et R (6.2)
Letting ¢y = l/m, ¢; = 7;/Am § =1,2.3, o -2 r* A4, one has
dXT, C , ) .
((/47’7)2 ) = ¢y ot ¢ - on ¢y ot E o g o 2 (0.3)
This is to be minimized over the three-dimensional set 'w -7 x. o - 0.a
semilinear problem.
We have

([2<T C) ) ) ) / 3 Y 3

- 4 155 BEEEERIR TR TR w8y - Qn(Re TR BT YO
(Am)® ,Z‘. ) Pt
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Let

pw) = }3: C Wk, 6.5)

Now let w be fixed. If Re p(w) < 0, then d? is minimized at o = 0 and its
minimum value is (47)? 22=0 | ¢ 2. If Re p(w) > 0, then d? is minimized
at 0 = (Re pw))/(1 + | w |2 + | w|* + | w|®) and its minimum value is

NI (Re pl))
(5 sl = e £ )

The investigation should now be carried further by varying w.

As a simple case, take T as the equilateral triangle whose vertices are
=1Lz, =w,z; =whw=1w7#1.Then,s =0,t=0,p =1, p(z) =
(1/mm)(1 + (7/10) z3). It can be shown that, as expected, the minimizing circle
has center at w = 0 and area equal to that of T.

7. APPROXIMATION IN THE HAUSDORFF METRIC

In this section we consider the approximation problem where the measure
of discrepancy between two sets is given by the Hausdorff distance. A natural
setting is the family % of nonempty, compact subsets of the plane R2. We
recall that if C, , C, € %, then the Hausdorff distance between them is given by

d(Cl N Cz) = I‘I‘lil‘l{e > O | C1 Q C2 + 56, C2 g C]_ _I_ 66}, (7.1)

where 0 is the closed unit disc in the plane under the Euclidean metric. Here
A -+ B designates the Minkowski sum i.e., the set of all @ + b with a€ 4,
b e B. The scalar product €4 designates the set of all ea with @ € A. Under
the Hausdorff metric, % is a complete metric space (see, for instance, [17]).
By considering sets of rational points, we see that € is separable. Moreover,
any subfamily {Ce % | CC C,, C,e ¥ fixed} is compact. This follows by
noting that any such subfamily is both closed and totally bounded (an e-net
can be formed from a sufficiently fine lattice). For convex sets, this compact-
ness result is due to Blaschke (see [27]).

With this preparation, we can use standard techniques to investigate best
approximation.

THEOREM. Let A € € and let # C ¥ be a closed subfamily. Then for some
B,e#

d(A, B,) = inf{d(4, B) Be &) (7.2)
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Proof. Fix any B« 4 and define
4 {Be A d(A. B) - d(A, B)
Clearly,
inf{d(A. B), Be #! - inf{d(A, B) Be #..

Moreover, # is compact since it is both closed and a subfamily of the compact
{C=%|CC A+ d(A, B)0}. Hence, d(A, B) attains a minimum over 4.

Umqueness of a best approximating set cannot generally be asserted.
Consider, for instance. A - - the closed unit disc. 4 - the sct of line segments
[—b, =-b]. The minimum Hausdorff distance is equal to one and is attained
for every b € [0, 2]. This example, however, suggests the following characteri-
zation of the subfamily of best approximants.

THEOREM. Let A€ % and let # % be closed. Then the subfamily %, .. 4
of best approximants is compact.

Proof. Using the notation of the previous theorem. we have
By ANLCeC  dA. C) - d(A By

Since # is compact and {C ¢ 6 | d(A, C) - d(A, By)} is closed, 4, is compact.

By suitably restricting the family of sets under consideration, stronger
results may be available. An example is affine approximation, where it is
required to approximate a set 4 from the family of translations and scalings
of a fixed set B. With the assumption of convexity, uniqueness can be asserted.

THEOREM. Let A, Be 6 be convex with B satisfving
(i) B has an interior poini,
(1) B has no corners.
Let # ={rB+plr_=0,pe R
Then inf{d(A, B)| B € 4} is attained uniquely for some B, € #. Moreover.
d(A, B,) = inf{e = 0! 4T B, — 0! (7.3)
=inf{e >0 B, C A — 0. (7.4)
Before proceeding to the proof of the theorem, we present some facts about
convex sets which can be found in standard references such as Eggleston [8].
Yaglom and Boltyanskii [27]. Rockafellar [18], and Valentine [22]. Asso-

ciated uniquely to each convex K& % is its continuous 2m7-periodic support
Junction

sl max{xcos o vsind (v vy KL
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This association preserves both metric and “‘semilinear’ structure
Sakipk(0) = asg(6) + Bsk,(0), a B =0, (7.5)
d(Ky, Ky) = |l sk, — s, || = max{] sg,(0) — sx0)] 1 6 €0, 2m)). (7.6)
In addition,
inf{e > 0 K, C K, + €0} = max{sg (0) — sg,(0) | 0 [0,2m)}. (7.7)

Finally, it K contains the origin, then
sg(8) =0, for all 6, (7.8)

with strict inequality if the origin is an interior point.

Proof of the Theorem. We begin by interpreting the setup in terms of
support functions. Let s,(8) be the support function of 4. By translating 4
appropriately, we can assume without loss of generality that 4 contains the
origin and hence s,(0) = 0. Let sg(6) be the support function of B, where
again. through a suitable translation, the origin is an interior point and
sp(6) > 0.

If p == (x,, »,). then the support function of rB + p, r = 0, is rsy(0) +
x, cos 8 + y, sin 6, and

d(A, rB — p) = max{l 5,(0) — (rsz(0) + x,cos 8 + y,sin 8)|| 8 [0, 2m)}. (7.9)

We seek to minimize this expression over all values r > 0, x,, y, . For the
moment, we relax the requirement that » be nonnegative and recognize the
resulting problem as one of best uniform approximation of s ,(6) by a linear
combination of the functions sz(6), cos 6, sin 6.

It is well known that if these functions form a periodic Tchebycheff system,
then a unique best approximation exists (see, for example, Karlin and
Studden [13, p. 282]). This condition holds if

sg(6;) cos @, sin 6,
sg(fy) cosB, sinf,| >0 (7.10)
sg(;) cos B, sin 6,

or, equivalently,
sp(6,) sin(0y, — 8,) + s5(8,) sin(0;, — 83) -+ s5(85) sin(@, — 6,) >0 (7.11)

where 6,, 0, ,0; are distinct and taken in counterclockwise order [13,
p. 180].
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There are two possibilities. 1f 8, , 8, ., 0, are “spread out,” ie.. U < 0,

0, <m0<8, 0, <m0 6 - 8, <a then each term in (7.11) is
nonnegative and two must be strictly positive (recall sp(6) = - 0. by assump-
tion). On the other hand, if the §’s are “‘clustered.,” 8, <2 8, < ¢, - # =
a more delicate analysis is required. It is well known that (7.11) always holds
with - replaced by = (see, for instance Boas [3, p. 70], Vitale {25)). If
equality obtains, then the following type of picture must occur.

7

7/ ~
A L
1/3? P

/77

93929]

FiGure 8.

B must lie in the intersection of the depicted half planes and it must
contain the point ¢. Necessarily, ¢ is a corner of B, but this contradicts
assumption (ii).

Hence we have verified (7.11) and conclude that there is a best approxima-
ting linear combination, which we write as rsp(f) -~ a cos(f - #,). Indeed,
the theory allows more to be concluded. If

M max{| s4(6) — (rsp(0) -+ a costd — 8))).1 8 < [0. 27]: (7.12)

then there exist four points of equioscillation, namely, 8, . 6, . 0, . #, {ugain
in counterclockwise order) such that

M == (1) 3[s.(8,) — (rsp(0;) + acos(t; — 6,))]

where 7 == 1, 2,3,4 and 8 = -1 or 1. This implies (7.3) and (7.4) and to
conclude the proof we only have to show that  ~- 0. Using (7.12). we hinve

M oos (6, ) - (rsply ) - @)
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or
a— M <rsg(by +m) — 540, +7) <D (7.13)
where
D = max{rsy(0) — 5,(60)| 8 € [0, 2m)}.
Again from (7.12) we have

M < max{j s (0) — rsg(0)|] 0 € [0, 27)} -+ max{] a cos(d — 8,){| 0 € [0, 27)}
=D +a

or
(M — a) < D. (7.14)

Combining (7.13) and (7.14) yields D = | M — a| = 0 and the continuity
of s, and sp assures the existence of a ¢ such that

D =rsp(f) — 546) =0
so that
rsa(B) = 5,0) = 0.

Since s(0) > 0, it follows that r = 0.

The actual numerical construction of the best approximating set would
proceed through the use of generalized Remez algorithms. We turn now to a
very special case in which this optimal set can be described in simple terms.
It is required to find the best approximating disc to a given triangle 7. Some
notation will be useful. The center and radius of a disc C will be denoted by p
and r, respectively. Let M denote the maximum distance from p to a vertex of
T and let m denote the minimum distance between p and a point of ¢7. If
p ¢ T, then, setting x.. = x for x >> 0, x, = 0, otherwise,

d(cy T) = max{(M — r)+ , m + r}

which is minimized for r = (M — m)/2, yielding d(C,T) = (m + M)/2.
Clearly, by moving p “toward” T, we can reduce (m + M)/2. Hence, a
candidate for the best approximating disc cannot have its center outside 7.
For discs centered at pe T, the optimal radius is (M + m)/2, yielding
d(C, T) == (M — m)/2. Hence, in searching for the best disc, it is sufficient to
minimize M — m over all choices of centers p e 7.

THEOREM. Given any triangle, the best approximating disc is unigue. Its
center is the intersection of the bisector of the smallest angle and the perpen-
dicular bisector of the largest side. (The case of isosceles triangles should be
interpreted appropriately.)
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Proof. Uniqueness follows from the previous theorem. By the preceding
remarks, we only have to verify that the described point minimizes Y/ 1.
We separate into two cases.

Case 1. The largest angle of the triangle =-90°. We draw the wiangle with
its largest side L down and its smallest angle to the right.

2

FIGURFE 9.

Let p be any point of the triangle. Note that a farthest vertex from p must
be 1 or 3 (possibly both). Suppose without loss of generality it is 3. 1f p is not
closest to L. rotate p around vertex 3 to get a point p” with the same M and m.

and hence M — m, as p.

FiGure 10,

Now construct p” by projecting p’ onto the perpendicular bisector of /..

Ficure 11.

1t is straightforward to verify that p”, if = p', is strictly better than p' 1e.

(using an obvious notation) M” — m” <. M - m. Thus the center of the best

Fioure 12,
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circle must lie on the perpendicular bisector. Let p* be the point described
in the theorem. Note that the points above p* on the perpendicular bisector
have strictly larger M and smaller m than p. As for points below p*, we have
the blown-up picture (where with a slight abuse of notation, we denote by
L/2 half the length of side L).

*

p
p
M
m
L/2
FIGURE 13.
Note that
M —m = (m? + (L¥4))/? — m.
Since
dM —m) n
P e (7))

m should be made as large as possible.
Hence p* is the best center.

Case 2. The triangle is acute angled. The perpendicular bisectors divide
the triangle into three regions labeled by the farthest vertex.

2

FIiGURE 14.

By an argument similar to that used in Case 1, it is possible to show that p*
must lie on the “skeleton” and indeed must coincide with the intersection
of the upper branch and the angle bisector at vertex 3.
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FiGURe 5.

8. APPROXIMATION AS A PROJECTION OPERATOR

The interpretation of ieast-squares approximation as a projection is well
known. There has been considerable abstract development of this idea,
particularly for functions of one real variable. See, e.g.. Deutsch [6].

Let us suppose that # is a family of regions in the plane and we have a
mapping P of # into #. Such a mapping wiil be called a projection if
P? == P

EXAMPLE 1. Let # consist of all (nondegenerate) triangles and circles in
the plane. If 7" is a triangle, let P(T') designate the nine-point circle (or the
inscribed circle or the cosine circle....) of T fix on one of these. If C is a circle.
let P(C) = C. Then, clearly P? =: P so that P is a projection.

ExamMpLE 2. Let ¢ designate the set of all bounded convex regions K of
the plane. Let P(K) designate the circumscribing polygon with sides in given
feasible directions (where the directions have been specified by giving. ¢.g.. the
direction of the outward normals to the sides). Then. clearly. P? - P.

EXAMPLE 3. Let # be a metric space of regions and #* a subset of .#.
Suppose, further, that for each R € # the problem of best approximation to
R from among the regions of #* has a unique solution. Designate it by
P4 R). Clearly, Py, is a projection operator.

ExAMPLE 4. Let 2 designate the set of all compact convex regions K of
the plane. Let P(K) designate the unique disc which best approximates K in
the sense of the Hausdorff metric. Then P2 - P.

The study of the properties of projection operators in the present context
would seem to be worthwhile.
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9. BEST APPROXIMATION OF REGIONS: A STOCHASTIC APPROACH

If the problem is of sufficient complexity and numerical answers are
desired, we might be forced to a Monte Carlo approach. Take, for example,
the problem of approximating a fixed triangle by a circle in the area of the
symmetric difference metric. Let the characteristic function of T be Cr(x, »)
while that of a circle centered at (a, B) and of radius r be C, ;. (x, ). We
must minimize

e Bory = [[ 1€, 3) = Cuplx, )| de dy ©.1)

over the region —o0 << o, B << o0, r > 0. Insofar as the boundary of the
symmetric difference is a sufficiently complicated piecewise linear and
circular configuration, it might be considered the better part of wisdom to
estimate J(w, B, r) by Monte Carlo techniques.

The naive approach would be as follows. (1) Fix a, 8, r and then estimate
J(a, B, r) by Monte Carlo to “sufficient” accuracy. Then, (2) vary «, 8, and r
according to some strategy of minimization, e.g., a gradient method.

It might occur to the reader that it should be possible to combine
(1) and (2) into one process, varying the parameters as one samples the
integrand.

Such a process has been called “stochastic approximation” and extensive
information about it can be found in Wasan [26, Chap. 3]. While convergen-
ce theorems have been proved, the hypotheses under which the theorems
hold are often ““unverifiable,” depending, as they must, upon the nature of J
as a function of its parameters, and the nature of the minimizing and iterative
strategies. Furthermore, even if one were to exhibit convergence in one’s
particular problem, it is by no means clear that the method of ‘“‘stochastic
approximation” exhibits computational economies over the naive method.
Numerical experimentation with techniques of stochastic approximation
have revealed that convergence may be agonizingly slow.

10. STOCHASTIC APPROXIMATION OF A SECOND KIND

We shall begin with a very specific problem in geometrical probability. Let
S designate the unit square S: 0 < x, y <C 1. Let T designate a closed (interior
plus boundary) triangle contained in S. If 7} and T, are two such triangles
selected at random, what is the probability that T, and T, overlap? More
specifically, a random triangle 7 will be constructed by selecting indepen-
dently six numbers x;, y;,{ = 1, 2, 3, from a uniform distribution on 0 <
t < 1 and using (x;, y,), { = 1, 2, 3, as the vertices of the triangle.

640/21/1-6
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In the language of linear programming, consider the system of six lincar
inequalities

Ax = By - C 20, i--1.2..,6. (10.1)

What is the probability that the system is feasible. given certain information
about the distribution of the 4;, B;, and C;?

For two given triangles (or six given lincar inequalities), algorithms of
linear programming may be used to determine numerically whether the
triangles do or do not overlap.

To solve such a problem may involve a considerable amount of computu-
tion. Therefore we might like to replace this problem by a simpler one, but
which is only partially equivalent to it: Approximate each triangle by u
circle (closed disc) by means of a fixed policy of approximation. Then ask
the question: Do the corresponding circles overlap ? This can be answered by
a short computation.

As examples of a fixed policy of approximation of a triangle 7 by u circle
C we mention;

(a) use of the circle whose center is at the center of gravity of 7 and
whose area equals that of 7.

{b) use of the circle whose center is at the center of gravity M of 7 and
whose radius equals the average distance of M from the vertices of 7.

(¢) use of second Lemoine circle of 7.

These particular policies are coordinate free.

A policy of approximation might be completely deterministic. But it also
might be stochastic or might have a mixture of deterministic and stochastic
elements. For example, given 7, determine C by using the center of gravity of
T as its center and by selecting its radius at random from a uniform distribu-
tionon 0 < r = 1.

In what follows we shall assume that the policy is deterministic.

For each fixed policy :Z of approximation, we consider the 2 - 2 matrix
P whose elements p,; are:

pu - the probability that both the triangles and the corresponding
circles overlap:

P10 <= the probability that the triangles overlap but the corresponding
circles do not:

P == the probability that the triangles do not overlap but the
corresponding circles do;

Pss  the probability that neither the triangles nor the corresponding
circles overlap.
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Notice that

Pu + pip = the probability that the triangles overlap;

P11 -+ Pae == p = trace P = the probability that the behavior of the
circles predicts properly the behavior of the triangles. (10.2)

For each policy of approximation # we may, in principle, compute the
corresponding p = p(£). For a given family of policies {#}, we may raise the
questions of whether there is a best one, how to characterize it, how to
compute it, etc.

We shall call this type of approximation stochastic approximation. This
term is used in a different context within sampling theory (see Section 9);
however, we feel that this term is equally, if not more, appropriate to the
process just mentioned.

Numerical Values by Monte Carlo

The basic probabilities p,; where estimated by Monte Carlo in the following
way. Each of the 12 coordinates was obtained from the FORTRAN random
number generator and was assumed to be drawn from a uniform distribution
over [0, 1]. The policy #, for the approximating circle was to place its center
at the center of gravity M of the triangle and to use the average distance of M
to the vertices as its radius. The results are tabulated below.

Key
Triangles overlap Triangles overlap
Circles overlap Circles do not overlap
Triangles do not overlap Neither triangles nor
Circles overlap Circles overlap
Number of runs: n = 10,000
62.92% 0.16%
27.39% 9.53%
Number of runs: # = 20,000
63.439, 0.16%,
269159 9.475%,

Adopting the values after n = 20,000 experiments, one can say that the
probability that two triangles overlap is 0.6345 + 0.0016 ~ 0.64. The
probability that the circles are an accurate predictor for the triangles is
0.6345 + 0.09475 a~ 0.73 = p(#)).
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The upper right element of the matrix is particularly interesting
geometrically, showing a relatively rare event. Consider also two degenerate
policies.

(1} A “placebo™ policy -2, of approximating 7 by a fixed circle. say
the unit circle. Since the approximating circles always overlap. this policy
will be effective ~64 %, of the time.

(2) The “null” policy -7, of approximating 7 by a null circle of radius O
and center at the c.g. of 7. Since these points coincide with probability 0.
this policy will be effective =36 of the time.

We list here the results of several additional policies &, . .2, .2, .2, . 7.

#,: center of circle is at c.g. M of T. Radius of circle equals maximum
distance from M to vertices of 7.

#,. center of circle is at ¢.g. M of T. Radius of circle equals minmmum
distance from M to vertices of 7.

. center of circle is at c.g. M of T. Radius of circle equals the mini-
mum of the distances of M to three sides of 7.

-#;: Center of circle is at ¢c.g. of T. Area of circle is area of 7.

2 Circle is the second Lemoine circle of 7.

The first four matrices below are all for 20,000 samples.

P(#,)

3617, 0°,
35, 2,855

P2y - 0.665

0 ON

(95}
N

P(:#,)

55.19°, 8.42°",
9.615°,  26.775°,

pA) - 0.8197

P(7))
18.33°, 4528,
0", 36.39 %

PPy 0.547
P(#)

45.88°; (7.73°,
3120, 33270,

P2y 0.792
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P(Z)

49.45%  27.92%
0329  2230%

PP = 0.718

In Z¢, the number of samples: 4000; is restricted to acute-angled triangles.

Thus, of the five policies tested, &; appears to be optimal.

We may run statistical tests on these results to determine the level of
confidence which we can place in distinguishing, say, &, from &, .

A commonly employed test is as follows. Assume that an event has
occurred a times in m repetitions of condition (1) and b times in » repetitions
of condition (2). Then, the difference in relative frequencies is regarded as
significant if

i_lgl>1(_14+%)+ua((a+b)(m+n—a—b))1/2~ (10.3)

m n 2\ m mn(m + n)

where u, is the value of the standard normal distribution at the significance
level «. (That is, for o = 95%, u, = 1.96; for o = 99 %, u, = 2.576.)

According to this test, the difference between #; and £, checks out as
significant at better than the 99.99 % level of significance.

Formalization of the Problem

Let the vertices of T3 be (x;, ¥y, (X2, ¥s), (x5, ¥s) and those of T, be
(x4, 70, (x5, ¥5), (xg,¥s). Let v designate the 12-component vector x,,
V1 5--s Xg 5 Vg - Let Hy, designate the closed unit hypercube in (real) Euclidean
12-space.

Define a characteristic function ¢(v) on Hy, as

¢y =1 if T,OT, =0,

(10.4)
Hv) =0 if T'NnT,=0.
Thus, ¢ is 1 on a certain polyhedron lying in H,,, and 0 elsewhere. Now one
has,

me (dv = dx, dx, - dy, dve) (10.5)

== the probability that the two triangles overlap.

Fix a policy £ of approximation of a triangle T by a circle C.

A given vector v determines two triangles 77 and 7,, which, in turn,
using the policy &, determine two approximating circles C, and C,.
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Define a second function (¢) as

Sry =1 i GGy 0.
(H0L6)
Hey - 0 i O G 0,

The policy .7 will be a good one it 4 is close Lo ¢. meaning by this that
¢ - is small, where 1 designates a norm on some class of functions
defined on H,, . For simplicity, adopt .- /.* J',,P 72 dr, so that one wants i
small

17y = | d drde {10.7)
Ay
Notice that whenever the circles are a good predictor, ¢y ). so that
(¢ - & 0. If the circles are a bad predictor. é - I so that
(¢ iE 1. Hence

1(.#) - the probability that the circles ure o bad predictor. (16.%)

Naturally we would like to minimize it.
Insofur as ¢ and o take on only the values U and 1, ¢ = & v - %, and
we note the alternative expression

Iy | (b 2 dr, (10.9)

{4

4. APPROXIMATION THFORY

A given policy -7 of approximation determines the function  on /1. .
Thus. through the correspondence 7 > s, and using 1(-#). we have con-
verted our problem to one of classical approximation theory.

If the family of policies {7} consists only of a finite number of distinct
policies. .#, ... #y ., then from the analytical point of view there is nothing
further to discuss. There is an optimal policy and the question of its expedi-
ttous computation is another matter.

If the family of policies {#,} is infinite, then therc is a theorv to be
developed. and one must look at the corresponding family of approximants
{0 where 2, —» o

In general, the subject of optimal policy is a nonlincar problem. Lxistence
of a best approximation is usually based upon a compactness argument and
uniqueness of best approximation can often. but not always. be based upon
convexity argument.

Let 7, have vertices (v, . v 7 10250 while 7, has vertices (v . 1)),
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i=4,5,6. Let the deterministic policy & assign to T, the circle centered at
(a, b) and of radius r, where one assumes that

a = q(xl PR y3)>
b =5(x1 ..y V3) (10.10)

Py == r(Xq ,.ees Vo).

The policy & assigns to T, the circle centered at (¢, d) and of radius r, where

¢ = q(x4 seees y6)9
d::S(X4 LARRE] J’s): (10‘11)

rg = r(x4 [ARRE yG)'
These two circles will be disjoint if and only if
(@a—cP+O—-—dH?2>r +r,. (10.12)

Hence, writing

Q) = ((a — ) + (b — dP),

(10.13)
o) =1+ 1y,
the circles are disjoint if and only if £2(v) > w(v). Hence,
@=1 if £0) < o),
i (10.14)

Hf(v) =0 if Q@) > o).

Now let {#,} designate a family of policies which are parametrized by o,
where we assume that « is a real variable or a vector of real variables. Each
2 determines two families of functions, X(«; v) and w(«; v). Through them,
one has

P vy = 1 it o; v) < wlogv),

(10.15)
Jy(v) =0 if Q(a; v) > wla ).

ExampLE. Let the vertices of T be 4, B, C, and its center of gravity be M.
Let p, == AM, p, = BM, p; = CM. Let the circle C approximating T have
its center at M and have radius

r = (¥py* + p* + p)'°,

« > 0 fixed.
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We now assume,

I. o varies on a compact subset 4 of the « space.
2. the two functions («; v) and w(x; ) are continuous for v« A,
ve Hy, .

Under these conditions, a minimum 1o / exists. For.

() = 1) | (40 oy de
Hyy
(10.16)

— J (]S(l) de -~ ' (! 2¢(1)) dr.
H

1n Yo )<Kol

In view of the continuity of £ and w, it is clear from standard theorems of
integration theory that the second integral is continuous in « so that /(x) is
continuous. The existence of 2 minimum is an immediate consequence.

Adaptive learning. We may set the problem of having a computing
machine teach itself what is the best policy 7 of approximation. One assumes
that the policy space has been parameterized in some fashion. Insofar as
theories of adaptive learning are clearly related to stochastic approximation
in the sense of Section 9, it follows that both types of stochastic approxima-
tion can, in fact, be interrelated.

BIBLIOGRAPHICAL REMARKS

Professor 1. J. Schoenberg has kindly pointed out that the affine approxi-
mation theorem (Section 7) for the special case of B, a disc, has been con-
sidered by Lebesgue (Sur quelques questions de minimum, relatives aux
courbes orbiforms, et sur leur rapports avec le calcul des variations. /. Math.
Pures Appl. (8), 4 (1921), (67-96).

Work related to Section 7 includes asymptotically optimal polygonal
approximation (McClure and Vitale [15]), computational procedures for
displaying and analyzing convex sets (Vitale and Tarr [23]), properties of
support functions (Vitale [25]), and limit theorems for sequences of random
sets (Artstein and Vitale [2] and Vitale [24]).

Sendov [19, 20], has considered the problem of approximation in the
Hausdorff metric of sets defined by functions of one real variable and its
relationship to the theory of e-entropy.

The article [21] by Ulam advocates a methodology which is similar to the
one adopted in this paper. Particularly pertinent are his concepts of “quasi-
fixed points” and “‘e-morphisms.™
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